85 research outputs found

    A Phenomenological Study of Graduated Nursing Student Athletes\u27 Experiences Balancing Academics and Athletics

    Get PDF
    The purpose of this transcendental phenomenological study is to describe the lived experiences of eleven graduated nursing student athletes who completed traditional, four-year nursing programs while concurrently finishing four years of athletic eligibility in their respective sport at three private, Christian, Midwest universities and across three different competitive collegiate athletic divisions. The theories guiding this study are Tinto’s Theory of Individual Departure from Institutions of Higher Learning, Astin’s Theory of Student Involvement, and Lazarus and Folkman’s Transactional Model of Stress Response, as they relate to student athletes’ persistence to graduation and to nursing students who reportedly experience higher levels of stress than other college students. Participants were purposefully selected to answer the following: How do graduated nursing student athletes describe their experiences in balancing sports and academics while completing a traditional, four-year nursing program and participating in intercollegiate sports? Data collection was conducted using journaling, semi-structured individual interviews, and focus groups. Confidentiality was maintained by using pseudonyms for all colleges and participants. Data analysis was conducted via pattern, theme, and content analysis. Validity and trustworthiness were established via expert and member reviews, as well as triangulation of participant groups, data sources, audit trails, enumeration tables, and inclusion of participant quotes

    Speed breeding is a powerful tool to accelerate crop research and breeding

    Get PDF
    The growing human population and a changing environment have raised significant concern for global food security, with the current improvement rate of several important crops inadequate to meet future demand1. This slow improvement rate is attributed partly to the long generation times of crop plants. Here, we present a method called ‘speed breeding’, which greatly shortens generation time and accelerates breeding and research programmes. Speed breeding can be used to achieve up to 6 generations per year for spring wheat (Triticum aestivum), durum wheat (T. durum), barley (Hordeum vulgare), chickpea (Cicer arietinum) and pea (Pisum sativum), and 4 generations for canola (Brassica napus), instead of 2–3 under normal glasshouse conditions. We demonstrate that speed breeding in fully enclosed, controlled-environment growth chambers can accelerate plant development for research purposes, including phenotyping of adult plant traits, mutant studies and transformation. The use of supplemental lighting in a glasshouse environment allows rapid generation cycling through single seed descent (SSD) and potential for adaptation to larger-scale crop improvement programs. Cost saving through light-emitting diode (LED) supplemental lighting is also outlined. We envisage great potential for integrating speed breeding with other modern crop breeding technologies, including high-throughput genotyping, genome editing and genomic selection, accelerating the rate of crop improvement

    Development and Validation of the Gene Expression Predictor of High-grade Serous Ovarian Carcinoma Molecular SubTYPE (PrOTYPE).

    Get PDF
    PURPOSE: Gene expression-based molecular subtypes of high-grade serous tubo-ovarian cancer (HGSOC), demonstrated across multiple studies, may provide improved stratification for molecularly targeted trials. However, evaluation of clinical utility has been hindered by nonstandardized methods, which are not applicable in a clinical setting. We sought to generate a clinical grade minimal gene set assay for classification of individual tumor specimens into HGSOC subtypes and confirm previously reported subtype-associated features. EXPERIMENTAL DESIGN: Adopting two independent approaches, we derived and internally validated algorithms for subtype prediction using published gene expression data from 1,650 tumors. We applied resulting models to NanoString data on 3,829 HGSOCs from the Ovarian Tumor Tissue Analysis consortium. We further developed, confirmed, and validated a reduced, minimal gene set predictor, with methods suitable for a single-patient setting. RESULTS: Gene expression data were used to derive the predictor of high-grade serous ovarian carcinoma molecular subtype (PrOTYPE) assay. We established a de facto standard as a consensus of two parallel approaches. PrOTYPE subtypes are significantly associated with age, stage, residual disease, tumor-infiltrating lymphocytes, and outcome. The locked-down clinical grade PrOTYPE test includes a model with 55 genes that predicted gene expression subtype with >95% accuracy that was maintained in all analytic and biological validations. CONCLUSIONS: We validated the PrOTYPE assay following the Institute of Medicine guidelines for the development of omics-based tests. This fully defined and locked-down clinical grade assay will enable trial design with molecular subtype stratification and allow for objective assessment of the predictive value of HGSOC molecular subtypes in precision medicine applications.See related commentary by McMullen et al., p. 5271.Core funding for this project was provided by the National Institutes of Health (R01-CA172404, PI: S.J. Ramus; and R01-CA168758, PIs: J.A. Doherty and M.A.Rossing), the Canadian Institutes for Health Research (Proof-of-Principle I program, PIs: D.G.Huntsman and M.S. Anglesio), the United States Department of Defense Ovarian Cancer Research Program (OC110433, PI: D.D. Bowtell). A. Talhouk is funded through a Michael Smith Foundation for Health Research Scholar Award. M.S. Anglesio is funded through a Michael Smith Foundation for Health Research Scholar Award and the Janet D. Cottrelle Foundation Scholars program managed by the BC Cancer Foundation. J. George was partially supported by the NIH/National Cancer Institute award number P30CA034196. C. Wang was a Career Enhancement Awardee of the Mayo Clinic SPORE in Ovarian Cancer (P50 CA136393). D.G. Huntsman receives support from the Dr. Chew Wei Memorial Professorship in Gynecologic Oncology, and the Canada Research Chairs program (Research Chair in Molecular and Genomic Pathology). M. Widschwendter receives funding from the European Union’s Horizon 2020 European Research Council Programme, H2020 BRCA-ERC under Grant Agreement No. 742432 as well as the charity, The Eve Appeal (https://eveappeal.org.uk/), and support of the National Institute for Health Research (NIHR) and the University College London Hospitals (UCLH) Biomedical Research Centre. G.E. Konecny is supported by the Miriam and Sheldon Adelson Medical Research Foundation. B.Y. Karlan is funded by the American Cancer Society Early Detection Professorship (SIOP-06-258-01-COUN) and the National Center for Advancing Translational Sciences (NCATS), Grant UL1TR000124. H.R. Harris is 20 supported by the NIH/National Cancer Institute award number K22 CA193860. OVCARE (including the VAN study) receives support through the BC Cancer Foundation and The VGH+UBC Hospital Foundation (authors AT, BG, DGH, and MSA). The AOV study is supported by the Canadian Institutes of Health Research (MOP86727). The Gynaecological Oncology Biobank at Westmead, a member of the Australasian Biospecimen Network-Oncology group, was funded by the National Health and Medical Research Council Enabling Grants ID 310670 & ID 628903 and the Cancer Institute NSW Grants ID 12/RIG/1-17 & 15/RIG/1-16. The Australian Ovarian Cancer Study Group was supported by the U.S. Army Medical Research and Materiel Command under DAMD17-01-1-0729, The Cancer Council Victoria, Queensland Cancer Fund, The Cancer Council New South Wales, The Cancer Council South Australia, The Cancer Council Tasmania and The Cancer Foundation of Western Australia (Multi-State Applications 191, 211 and 182) and the National Health and Medical Research Council of Australia (NHMRC; ID199600; ID400413 and ID400281). BriTROC-1 was funded by Ovarian Cancer Action (to IAM and JDB, grant number 006) and supported by Cancer Research UK (grant numbers A15973, A15601, A18072, A17197, A19274 and A19694) and the National Institute for Health Research Cambridge and Imperial Biomedical Research Centres. Samples from the Mayo Clinic were collected and provided with support of P50 CA136393 (E.L.G., G.L.K, S.H.K, M.E.S.)

    Clinical and pathological associations of PTEN expression in ovarian cancer: a multicentre study from the Ovarian Tumour Tissue Analysis Consortium

    Get PDF
    Abstract: Background: PTEN loss is a putative driver in histotypes of ovarian cancer (high-grade serous (HGSOC), endometrioid (ENOC), clear cell (CCOC), mucinous (MOC), low-grade serous (LGSOC)). We aimed to characterise PTEN expression as a biomarker in epithelial ovarian cancer in a large population-based study. Methods: Tumours from 5400 patients from a multicentre observational, prospective cohort study of the Ovarian Tumour Tissue Analysis Consortium were used to evaluate associations between immunohistochemical PTEN patterns and overall survival time, age, stage, grade, residual tumour, CD8+ tumour-infiltrating lymphocytes (TIL) counts, expression of oestrogen receptor (ER), progesterone receptor (PR) and androgen receptor (AR) by means of Cox proportional hazard models and generalised Cochran–Mantel–Haenszel tests. Results: Downregulation of cytoplasmic PTEN expression was most frequent in ENOC (most frequently in younger patients; p value = 0.0001) and CCOC and was associated with longer overall survival in HGSOC (hazard ratio: 0.78, 95% CI: 0.65–0.94, p value = 0.022). PTEN expression was associated with ER, PR and AR expression (p values: 0.0008, 0.062 and 0.0002, respectively) in HGSOC and with lower CD8 counts in CCOC (p value < 0.0001). Heterogeneous expression of PTEN was more prevalent in advanced HGSOC (p value = 0.019) and associated with higher CD8 counts (p value = 0.0016). Conclusions: PTEN loss is a frequent driver in ovarian carcinoma associating distinctly with expression of hormonal receptors and CD8+ TIL counts in HGSOC and CCOC histotypes

    Polygenic Risk Modelling for Prediction of Epithelial Ovarian Cancer Risk

    Get PDF
    Funder: Funding details are provided in the Supplementary MaterialAbstractPolygenic risk scores (PRS) for epithelial ovarian cancer (EOC) have the potential to improve risk stratification. Joint estimation of Single Nucleotide Polymorphism (SNP) effects in models could improve predictive performance over standard approaches of PRS construction. Here, we implemented computationally-efficient, penalized, logistic regression models (lasso, elastic net, stepwise) to individual level genotype data and a Bayesian framework with continuous shrinkage, “select and shrink for summary statistics” (S4), to summary level data for epithelial non-mucinous ovarian cancer risk prediction. We developed the models in a dataset consisting of 23,564 non-mucinous EOC cases and 40,138 controls participating in the Ovarian Cancer Association Consortium (OCAC) and validated the best models in three populations of different ancestries: prospective data from 198,101 women of European ancestry; 7,669 women of East Asian ancestry; 1,072 women of African ancestry, and in 18,915 BRCA1 and 12,337 BRCA2 pathogenic variant carriers of European ancestry. In the external validation data, the model with the strongest association for non-mucinous EOC risk derived from the OCAC model development data was the S4 model (27,240 SNPs) with odds ratios (OR) of 1.38(95%CI:1.28–1.48,AUC:0.588) per unit standard deviation, in women of European ancestry; 1.14(95%CI:1.08–1.19,AUC:0.538) in women of East Asian ancestry; 1.38(95%CI:1.21-1.58,AUC:0.593) in women of African ancestry; hazard ratios of 1.37(95%CI:1.30–1.44,AUC:0.592) in BRCA1 pathogenic variant carriers and 1.51(95%CI:1.36-1.67,AUC:0.624) in BRCA2 pathogenic variant carriers. Incorporation of the S4 PRS in risk prediction models for ovarian cancer may have clinical utility in ovarian cancer prevention programs.</jats:p

    Abdominal aortic aneurysm: results of a family study

    No full text
    Data pertaining to abdominal aortic aneurysm among first-degree relatives of 91 patients with abdominal aortic aneurysm are presented. The percentage of families with at least one affected first-degree relative of the proband (multiplex families) was 15.4%. In 21.4% of multiplex families parent-offspring transmission of abdominal aortic aneurysm was noted; in the remaining families only siblings were affected. The mean age at onset among probands was 67.3 years; that among all affected was 67.4 years. No statistically significant difference in the mean ages at onset between genders was noted. Among affected siblings of probands, the sex ratio, male:female, was 1.33:1, which is not significantly different from 1:1. The relative risk of developing an abdominal aortic aneurysm was 3.97 for fathers, 4.03 for mothers, 9.92 for brothers, and 22.93 for sisters

    Ultrasound screening of first-degree relatives of patients with an abdominal aortic aneurysm

    No full text
    The pedigrees were constructed of 43 patients (probands) who underwent resection of an abdominal aortic aneurysm. Seven probands (16.2%) had a first-degree relative (parent, sibling, child) known to have had an abdominal aortic aneurysm (multiplex family). To determine the prevalence of undiagnosed abdominal aortic aneurysm, ultrasound screening of first-degree relatives over age 40 years was undertaken. Of 202 eligible relatives, 103 (51.0%) were screened. An occult abdominal aortic aneurysm was defined as an infrarenal aortic diameter &gt;3.0 cm or an infrarenal/suprarenal aortic diameter ratio of &gt;1.5. An incipient abdominal aortic aneurysm was defined as a clear focal bulge of the infrarenal aorta, which was &lt;3.0 cm in greatest diameter. Four of 103 relatives (3.9%) were found to have an occult abdominal aortic aneurysm (age/sex: 57M, 60M, 62F, 65M), and three (2.9%) were found with an incipient abdominal aortic aneurysm (age/sex: 56M, 60M, 67F). These smaller abdominal aortic aneurysms were in patients younger than the operated probands (average age men, 67 years; women, 69 years). Six of seven individuals were in families previously considered simplex, increasing the actual multiplex family frequency from 16.2% to 27.9%. All seven new abdominal aortic aneurysms were found in the 49 siblings age 55 years or older. There were no abdominal aortic aneurysms found in the 39 relatives under age 55 years, in 14 children ages 50 to 59 years or in one parent. Therefore of the siblings age 55 years or older, 5/20 men (25.0%) and 2/29 women (6.9%) were found to have a previously undiagnosed abdominal aortic aneurysm. In patients with abdominal aortic aneurysm, screening of siblings over age 55 years is recommended because of the high prevalence of undiagnosed abdominal aortic aneurysm
    corecore